If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2-16z-81=0
a = 1; b = -16; c = -81;
Δ = b2-4ac
Δ = -162-4·1·(-81)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{145}}{2*1}=\frac{16-2\sqrt{145}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{145}}{2*1}=\frac{16+2\sqrt{145}}{2} $
| H=1.06x10-^10 | | 34+2x=7x | | 2(3)-1=k | | 85-x=145 | | 4-2y=-10-4y | | 16+7y=2y+32 | | H=1.06x10^-10 | | 85x=145 | | 3/4+1/2(x-4/3)=3/5x+5/4(x+2/3) | | 21=-3(x-1) | | 85+x=145 | | 6n=5(n-7) | | -15a=-75 | | (3x+18)+(7x-58)+(2x-8)=180 | | 1.75+0.75m=7.75 | | x+9=8(2x+3) | | (3x+18)+(7x-58)+2x-8)=180 | | 4x+7=6x+6 | | 2x+5+7x-4=10 | | 4b-10=10-6b | | 3h=-h+16 | | 3x-8+3x-8=4x+6 | | -2(2x+1)=3(x+4) | | t-3/10=2/5 | | 6+x/4x+14=3/2 | | 12-4w=-14 | | 2(4+10n)-n=103 | | 2n−3=3n | | 2-(x+5)=7 | | 39.9=r+16.4 | | y-4/9=1/9 | | -5.67+q=18.67 |